实时数仓由Flink源源不断从Kafka当中读数据计算,所以不需要手动同步数据到实时数仓。
用户行为数据由Flume从Kafka直接同步到HDFS,由于离线数仓采用Hive的分区表按天统计,所以目标路径要包含一层日期。具体数据流向如下图所示。
按照规划,该Flume需将Kafka中topic_log的数据发往HDFS。并且对每天产生的用户行为日志进行区分,将不同天的数据发往HDFS不同天的路径。
此处选择KafkaSource、FileChannel、HDFSSink。
关键配置如下:
1)创建Flume配置文件
在hadoop104节点的Flume的job目录下创建kafka_to_hdfs_log.conf
[atguigu@hadoop104 flume]$ vim job/kafka_to_hdfs_log.conf
2)配置文件内容如下
#定义组件
a1.sources=r1
a1.channels=c1
a1.sinks=k1#配置source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.topics=topic_log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.atguigu.gmall.flume.interceptor.TimestampInterceptor$Builder#配置channel
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior1
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior1
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6#配置sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_log/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = log
a1.sinks.k1.hdfs.round = false#解决小文件问题
#按时间输出10s
a1.sinks.k1.hdfs.rollInterval = 10
#按文件大小输出 128M
a1.sinks.k1.hdfs.rollSize = 134217728
#按行数输出这里 把他关掉
a1.sinks.k1.hdfs.rollCount = 0#控制输出文件类型
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip#组装
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
注:配置优化
通过配置dataDirs指向多个路径,每个路径对应不同的硬盘,增大Flume吞吐量。
官方说明如下:
Comma separated list of directories for storing log files. Using multiple directories on separate disks can improve file channel peformance
checkpointDir和backupCheckpointDir也尽量配置在不同硬盘对应的目录中,保证checkpoint坏掉后,可以快速使用backupCheckpointDir恢复数据
(1)HDFS存入大量小文件,有什么影响?
元数据层面:每个小文件都有一份元数据,其中包括文件路径,文件名,所有者,所属组,权限,创建时间等,这些信息都保存在Namenode内存中。所以小文件过多,会占用Namenode服务器大量内存,影响Namenode性能和使用寿命
计算层面:默认情况下MR会对每个小文件启用一个Map任务计算,非常影响计算性能。同时也影响磁盘寻址时间。
(2)HDFS小文件处理
官方默认的这三个参数配置写入HDFS后会产生小文件,hdfs.rollInterval、hdfs.rollSize、hdfs.rollCount
基于以上hdfs.rollInterval=3600,hdfs.rollSize=134217728,hdfs.rollCount =0几个参数综合作用,效果如下:
(1)文件在达到128M时会滚动生成新文件
(2)文件创建超3600秒时会滚动生成新文件
(1)数据漂移问题
(2)在com.atguigu.gmall.flume.interceptor包下创建TimestampInterceptor类
package com.atguigu.gmall.flume.interceptor;import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;public class TimestampInterceptor implements Interceptor {@Overridepublic void initialize() {}@Overridepublic Event intercept(Event event) {//1、获取header和body的数据Map headers = event.getHeaders();String log = new String(event.getBody(), StandardCharsets.UTF_8);//2、将body的数据类型转成jsonObject类型(方便获取数据)JSONObject jsonObject = JSONObject.parseObject(log);//3、header中timestamp时间字段替换成日志生成的时间戳(解决数据漂移问题)String ts = jsonObject.getString("ts");headers.put("timestamp", ts);return event;}@Overridepublic List intercept(List list) {for (Event event : list) {intercept(event);}return list;}@Overridepublic void close() {}public static class Builder implements Interceptor.Builder {@Overridepublic Interceptor build() {return new TimestampInterceptor();}@Overridepublic void configure(Context context) {}}
}
(3)重新打包
(4)需要先将打好的包放入到hadoop104的/opt/module/flume/lib文件夹下面。
1)启动Zookeeper、Kafka集群
2)启动日志采集Flume
[atguigu@hadoop102 ~]$ f1.sh start
3)启动hadoop104的日志消费Flume
[atguigu@hadoop104 flume]$ bin/flume-ng agent -n a1 -c conf/ -f job/kafka_to_hdfs_log.conf -Dflume.root.logger=info,console
4)生成模拟数据
[atguigu@hadoop102 ~]$ lg.sh
5)观察HDFS是否出现数据
若上述测试通过,为方便,此处创建一个Flume的启停脚本。
1)在hadoop102节点的/home/atguigu/bin目录下创建脚本f2.sh
[atguigu@hadoop102 bin]$ vim f2.sh
在脚本中填写如下内容
#!/bin/bashcase $1 in
"start")echo " --------启动 hadoop104 日志数据flume-------"ssh hadoop104 "nohup /opt/module/flume/bin/flume-ng agent -n a1 -c /opt/module/flume/conf -f /opt/module/flume/job/kafka_to_hdfs_log.conf >/dev/null 2>&1 &"
;;
"stop")echo " --------停止 hadoop104 日志数据flume-------"ssh hadoop104 "ps -ef | grep kafka_to_hdfs_log | grep -v grep |awk '{print \$2}' | xargs -n1 kill"
;;
esac
2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 f2.sh
3)f2启动
[atguigu@hadoop102 module]$ f2.sh start
4)f2停止
[atguigu@hadoop102 module]$ f2.sh stop
业务数据是数据仓库的重要数据来源,我们需要每日定时从业务数据库中抽取数据,传输到数据仓库中,之后再对数据进行分析统计。
为保证统计结果的正确性,需要保证数据仓库中的数据与业务数据库是同步的,离线数仓的计算周期通常为天,所以数据同步周期也通常为天,即每天同步一次即可。
数据的同步策略有全量同步和增量同步。
全量同步,就是每天都将业务数据库中的全部数据同步一份到数据仓库,这是保证两侧数据同步的最简单的方式。
增量同步,就是每天只将业务数据中的新增及变化数据同步到数据仓库。采用每日增量同步的表,通常需要在首日先进行一次全量同步。
两种策略都能保证数据仓库和业务数据库的数据同步,那应该如何选择呢?下面对两种策略进行简要对比。
同步策略 | 优点 | 缺点 |
全量同步 | 逻辑简单 | 在某些情况下效率较低。例如某张表数据量较大,但是每天数据的变化比例很低,若对其采用每日全量同步,则会重复同步和存储大量相同的数据。 |
增量同步 | 效率高,无需同步和存储重复数据 | 逻辑复杂,需要将每日的新增及变化数据同原来的数据进行整合,才能使用 |
根据上述对比,可以得出以下结论:
通常情况,业务表数据量比较大,优先考虑增量,数据量比较小,优先考虑全量;具体选择由数仓模型决定,此处暂不详解。
下图为各表同步策略:
数据同步工具种类繁多,大致可分为两类,一类是以DataX、Sqoop为代表的基于Select查询的离线、批量同步工具,另一类是以Maxwell、Canal为代表的基于数据库数据变更日志(例如MySQL的binlog,其会实时记录所有的insert、update以及delete操作)的实时流式同步工具。
全量同步通常使用DataX、Sqoop等基于查询的离线同步工具。而增量同步既可以使用DataX、Sqoop等工具,也可使用Maxwell、Canal等工具,下面对增量同步不同方案进行简要对比。
增量同步方案 | DataX/Sqoop | Maxwell/Canal |
对数据库的要求 | 原理是基于查询,故若想通过select查询获取新增及变化数据,就要求数据表中存在create_time、update_time等字段,然后根据这些字段获取变更数据。 | 要求数据库记录变更操作,例如MySQL需开启binlog。 |
数据的中间状态 | 由于是离线批量同步,故若一条数据在一天中变化多次,该方案只能获取最后一个状态,中间状态无法获取。 | 由于是实时获取所有的数据变更操作,所以可以获取变更数据的所有中间状态。 |
本项目中,全量同步采用DataX,增量同步采用Maxwell。
详情看前面datax安装教程
全量表数据由DataX从MySQL业务数据库直接同步到HDFS,具体数据流向如下图所示。
我们需要为每张全量表编写一个DataX的json配置文件,此处以activity_info为例,配置文件内容如下:
{"job": {"content": [{"reader": {"name": "mysqlreader","parameter": {"column": ["id","activity_name","activity_type","activity_desc","start_time","end_time","create_time"],"connection": [{"jdbcUrl": ["jdbc:mysql://hadoop102:3306/gmall"],"table": ["activity_info"]}],"password": "000000","splitPk": "","username": "root"}},"writer": {"name": "hdfswriter","parameter": {"column": [{"name": "id","type": "bigint"},{"name": "activity_name","type": "string"},{"name": "activity_type","type": "string"},{"name": "activity_desc","type": "string"},{"name": "start_time","type": "string"},{"name": "end_time","type": "string"},{"name": "create_time","type": "string"}],"compress": "gzip","defaultFS": "hdfs://hadoop102:8020","fieldDelimiter": "\t","fileName": "activity_info","fileType": "text","path": "${targetdir}","writeMode": "append"}}}],"setting": {"speed": {"channel": 1}}}
}
注:由于目标路径包含一层日期,用于对不同天的数据加以区分,故path参数并未写死,需在提交任务时通过参数动态传入,参数名称为targetdir。
方便起见,此处提供了DataX配置文件批量生成脚本,脚本内容及使用方式如下。
# [atguigu@hadoop102 bin]$ vim ~/bin/gen_import_config.py
# 脚本内容如下
# ecoding=utf-8
import json
import getopt
import os
import sys
import MySQLdb#MySQL相关配置,需根据实际情况作出修改
mysql_host = "hadoop102"
mysql_port = "3306"
mysql_user = "root"
mysql_passwd = "000000"#HDFS NameNode相关配置,需根据实际情况作出修改
hdfs_nn_host = "hadoop102"
hdfs_nn_port = "8020"#生成配置文件的目标路径,可根据实际情况作出修改
output_path = "/opt/module/datax/job/import"def get_connection():return MySQLdb.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, passwd=mysql_passwd)def get_mysql_meta(database, table):connection = get_connection()cursor = connection.cursor()sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"cursor.execute(sql, [database, table])fetchall = cursor.fetchall()cursor.close()connection.close()return fetchalldef get_mysql_columns(database, table):return map(lambda x: x[0], get_mysql_meta(database, table))def get_hive_columns(database, table):def type_mapping(mysql_type):mappings = {"bigint": "bigint","int": "bigint","smallint": "bigint","tinyint": "bigint","decimal": "string","double": "double","float": "float","binary": "string","char": "string","varchar": "string","datetime": "string","time": "string","timestamp": "string","date": "string","text": "string"}return mappings[mysql_type]meta = get_mysql_meta(database, table)return map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta)def generate_json(source_database, source_table):job = {"job": {"setting": {"speed": {"channel": 3},"errorLimit": {"record": 0,"percentage": 0.02}},"content": [{"reader": {"name": "mysqlreader","parameter": {"username": mysql_user,"password": mysql_passwd,"column": get_mysql_columns(source_database, source_table),"splitPk": "","connection": [{"table": [source_table],"jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database]}]}},"writer": {"name": "hdfswriter","parameter": {"defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,"fileType": "text","path": "${targetdir}","fileName": source_table,"column": get_hive_columns(source_database, source_table),"writeMode": "append","fieldDelimiter": "\t","compress": "gzip"}}}]}}if not os.path.exists(output_path):os.makedirs(output_path)with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f:json.dump(job, f)def main(args):source_database = ""source_table = ""options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl='])for opt_name, opt_value in options:if opt_name in ('-d', '--sourcedb'):source_database = opt_valueif opt_name in ('-t', '--sourcetbl'):source_table = opt_valuegenerate_json(source_database, source_table)if __name__ == '__main__':main(sys.argv[1:])
注:
(1)安装Python Mysql驱动
由于需要使用Python访问Mysql数据库,故需安装驱动,先下载MySQL-python在以下网址:
https://pypi.org/project/MySQL-python/1.2.5/#modal-close
下载好了之后在解压,执行如下命令:
Sudo python setup.py build
如果出现错误说:
找不到mysql_config,所以也查找不到。原因是缺少了 mysql相关支持。
mysql_config是来自于 mysql-devel网上的说法是同时安装python-devel,如果你没有安装的话一起安装.
yum install python-devel -y
在MySQL官网下载安装包解压找到mysql-devel上传进行安装:
sudo rpm -ivh mysql-community-devel-5.7.28-1.el7.x86_64.rpm
最后执行这个命令就安装成功了!!!
sudo python setup.py install
(2)脚本使用说明
python gen_import_config.py -d database -t table
通过-d传入数据库名,-t传入表名,执行上述命令即可生成该表的DataX同步配置文件。
[atguigu@hadoop102 bin]$ vim ~/bin/gen_import_config.sh
脚本内容如下
#!/bin/bashpython ~/bin/gen_import_config.py -d gmall -t activity_info
python ~/bin/gen_import_config.py -d gmall -t activity_rule
python ~/bin/gen_import_config.py -d gmall -t base_category1
python ~/bin/gen_import_config.py -d gmall -t base_category2
python ~/bin/gen_import_config.py -d gmall -t base_category3
python ~/bin/gen_import_config.py -d gmall -t base_dic
python ~/bin/gen_import_config.py -d gmall -t base_province
python ~/bin/gen_import_config.py -d gmall -t base_region
python ~/bin/gen_import_config.py -d gmall -t base_trademark
python ~/bin/gen_import_config.py -d gmall -t cart_info
python ~/bin/gen_import_config.py -d gmall -t coupon_info
python ~/bin/gen_import_config.py -d gmall -t sku_attr_value
python ~/bin/gen_import_config.py -d gmall -t sku_info
python ~/bin/gen_import_config.py -d gmall -t sku_sale_attr_value
python ~/bin/gen_import_config.py -d gmall -t spu_info
3)为gen_import_config.sh脚本增加执行权限
[atguigu@hadoop102 bin]$ chmod 777 ~/bin/gen_import_config.sh
4)执行gen_import_config.sh脚本,生成配置文件
[atguigu@hadoop102 bin]$ gen_import_config.sh
5)观察生成的配置文件
[atguigu@hadoop102 bin]$ ll /opt/module/datax/job/import/
总用量 60
-rw-rw-r-- 1 atguigu atguigu 957 10月 15 22:17 gmall.activity_info.json
-rw-rw-r-- 1 atguigu atguigu 1049 10月 15 22:17 gmall.activity_rule.json
-rw-rw-r-- 1 atguigu atguigu 651 10月 15 22:17 gmall.base_category1.json
-rw-rw-r-- 1 atguigu atguigu 711 10月 15 22:17 gmall.base_category2.json
-rw-rw-r-- 1 atguigu atguigu 711 10月 15 22:17 gmall.base_category3.json
-rw-rw-r-- 1 atguigu atguigu 835 10月 15 22:17 gmall.base_dic.json
-rw-rw-r-- 1 atguigu atguigu 865 10月 15 22:17 gmall.base_province.json
-rw-rw-r-- 1 atguigu atguigu 659 10月 15 22:17 gmall.base_region.json
-rw-rw-r-- 1 atguigu atguigu 709 10月 15 22:17 gmall.base_trademark.json
-rw-rw-r-- 1 atguigu atguigu 1301 10月 15 22:17 gmall.cart_info.json
-rw-rw-r-- 1 atguigu atguigu 1545 10月 15 22:17 gmall.coupon_info.json
-rw-rw-r-- 1 atguigu atguigu 867 10月 15 22:17 gmall.sku_attr_value.json
-rw-rw-r-- 1 atguigu atguigu 1121 10月 15 22:17 gmall.sku_info.json
-rw-rw-r-- 1 atguigu atguigu 985 10月 15 22:17 gmall.sku_sale_attr_value.json
-rw-rw-r-- 1 atguigu atguigu 811 10月 15 22:17 gmall.spu_info.json
以activity_info为例,测试用脚本生成的配置文件是否可用。
由于DataX同步任务要求目标路径提前存在,故需手动创建路径,当前activity_info表的目标路径应为/origin_data/gmall/db/activity_info_full/2020-06-14。
[atguigu@hadoop102 bin]$ hadoop fs -mkdir /origin_data/gmall/db/activity_info_full/2020-06-14
2)执行DataX同步命令
[atguigu@hadoop102 bin]$ python /opt/module/datax/bin/datax.py -p"-Dtargetdir=/origin_data/gmall/db/activity_info_full/2020-06-14" /opt/module/datax/job/import/gmall.activity_info.json
3)观察同步结果
观察HFDS目标路径是否出现数据。
为方便使用以及后续的任务调度,此处编写一个全量表数据同步脚本。
1)在~/bin目录创建mysql_to_hdfs_full.sh
[atguigu@hadoop102 bin]$ vim ~/bin/mysql_to_hdfs_full.sh
# 脚本内容如下
#!/bin/bashDATAX_HOME=/opt/module/datax# 如果传入日期则do_date等于传入的日期,否则等于前一天日期
if [ -n "$2" ] ;thendo_date=$2
elsedo_date=`date -d "-1 day" +%F`
fi#处理目标路径,此处的处理逻辑是,如果目标路径不存在,则创建;若存在,则清空,目的是保证同步任务可重复执行
handle_targetdir() {hadoop fs -test -e $1if [[ $? -eq 1 ]]; thenecho "路径$1不存在,正在创建......"hadoop fs -mkdir -p $1elseecho "路径$1已经存在"fs_count=$(hadoop fs -count $1)content_size=$(echo $fs_count | awk '{print $3}')if [[ $content_size -eq 0 ]]; thenecho "路径$1为空"elseecho "路径$1不为空,正在清空......"hadoop fs -rm -r -f $1/*fifi
}#数据同步
import_data() {datax_config=$1target_dir=$2handle_targetdir $target_dirpython $DATAX_HOME/bin/datax.py -p"-Dtargetdir=$target_dir" $datax_config
}case $1 in
"activity_info")import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date;;
"activity_rule")import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date;;
"base_category1")import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date;;
"base_category2")import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date;;
"base_category3")import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date;;
"base_dic")import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date;;
"base_province")import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date;;
"base_region")import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date;;
"base_trademark")import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date;;
"cart_info")import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date;;
"coupon_info")import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date;;
"sku_attr_value")import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date;;
"sku_info")import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date;;
"sku_sale_attr_value")import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date;;
"spu_info")import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date;;
"all")import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_dateimport_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_dateimport_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_dateimport_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_dateimport_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_dateimport_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_dateimport_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_dateimport_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_dateimport_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_dateimport_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_dateimport_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_dateimport_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_dateimport_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_dateimport_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_dateimport_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date;;
esac
2)为mysql_to_hdfs_full.sh增加执行权限
[atguigu@hadoop102 bin]$ chmod 777 ~/bin/mysql_to_hdfs_full.sh
3)测试同步脚本(第二个参数可以不传)
[atguigu@hadoop102 bin]$ mysql_to_hdfs_full.sh all 2020-06-14
4)检查同步结果
查看HDFS目表路径是否出现全量表数据,全量表共15张。
Flume需要将Kafka中topic_db主题的数据传输到HDFS,故其需选用KafkaSource以及HDFSSink,Channel选用FileChannel。
需要注意的是, HDFSSink需要将不同mysql业务表的数据写到不同的路径,并且路径中应当包含一层日期,用于区分每天的数据。关键配置如下:
具体数据示例如下:
2)Flume配置实操
(1)创建Flume配置文件
在hadoop104节点的Flume的job目录下创建kafka_to_hdfs_db.conf
[atguigu@hadoop104 flume]$ mkdir job
[atguigu@hadoop104 flume]$ vim job/kafka_to_hdfs_db.conf
(2)配置文件内容如下
a1.sources = r1
a1.channels = c1
a1.sinks = k1a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092
a1.sources.r1.kafka.topics = topic_db
a1.sources.r1.kafka.consumer.group.id = flume
a1.sources.r1.setTopicHeader = true
a1.sources.r1.topicHeader = topic
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.atguigu.gmall.flume.interceptor.TimestampAndTableNameInterceptor$Buildera1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior2
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior2/
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/db/%{tableName}_inc/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = db
a1.sinks.k1.hdfs.round = falsea1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1
(3)编写Flume拦截器
○1新建一个Maven项目,并在pom.xml文件中加入如下配置
org.apache.flume flume-ng-core 1.9.0 provided com.alibaba fastjson 1.2.62
maven-compiler-plugin 2.3.2 1.8 1.8 maven-assembly-plugin jar-with-dependencies make-assembly package single
○2在com.atguigu.gmall.flume.interceptor包下创建TimestampAndTableNameInterceptor类
package com.atguigu.gmall.flume.interceptor;import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;public class TimestampAndTableNameInterceptor implements Interceptor {@Overridepublic void initialize() {}@Overridepublic Event intercept(Event event) {Map headers = event.getHeaders();
String log = new String(event.getBody(), StandardCharsets.UTF_8);JSONObject jsonObject = JSONObject.parseObject(log);Long ts = jsonObject.getLong("ts");//Maxwell输出的数据中的ts字段时间戳单位为秒,Flume HDFSSink要求单位为毫秒String timeMills = String.valueOf(ts * 1000);String tableName = jsonObject.getString("table");headers.put("timestamp", timeMills);headers.put("tableName", tableName);return event;}@Overridepublic List intercept(List events) {for (Event event : events) {intercept(event);}return events;}@Overridepublic void close() {}public static class Builder implements Interceptor.Builder {@Overridepublic Interceptor build() {return new TimestampAndTableNameInterceptor ();}@Overridepublic void configure(Context context) {}}
}
○3重新打包
○4将打好的包放入到hadoop104的/opt/module/flume/lib文件夹下
[atguigu@hadoop102 lib]$ ls | grep interceptor
flume-interceptor-1.0-SNAPSHOT-jar-with-dependencies.jar
3)通道测试
(1)启动Zookeeper、Kafka集群
(2)启动hadoop104的Flume
[atguigu@hadoop104 flume]$ bin/flume-ng agent -n a1 -c conf/ -f job/kafka_to_hdfs_db.conf -Dflume.root.logger=info,console
(3)生成模拟数据
[atguigu@hadoop102 bin]$ cd /opt/module/db_log/
[atguigu@hadoop102 db_log]$ java -jar gmall2020-mock-db-2021-11-14.jar
(4)观察HDFS上的目标路径是否有数据出现
若HDFS上的目标路径已有增量表的数据出现了,就证明数据通道已经打通。
(5)数据目标路径的日期说明
仔细观察,会发现目标路径中的日期,并非模拟数据的业务日期,而是当前日期。这是由于Maxwell输出的JSON字符串中的ts字段的值,是数据的变动日期。而真实场景下,数据的业务日期与变动日期应当是一致的。
4)编写Flume启停脚本
为方便使用,此处编写一个Flume的启停脚本
(1)在hadoop102节点的/home/atguigu/bin目录下创建脚本f3.sh
[atguigu@hadoop102 bin]$ vim f3.sh
在脚本中填写如下内容
#!/bin/bashcase $1 in
"start")echo " --------启动 hadoop104 业务数据flume-------"ssh hadoop104 "nohup /opt/module/flume/bin/flume-ng agent -n a1 -c /opt/module/flume/conf -f /opt/module/flume/job/kafka_to_hdfs_db.conf >/dev/null 2>&1 &"
;;
"stop")echo " --------停止 hadoop104 业务数据flume-------"ssh hadoop104 "ps -ef | grep kafka_to_hdfs_db | grep -v grep |awk '{print \$2}' | xargs -n1 kill"
;;
esac
(2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 f3.sh
(3)f3启动
[atguigu@hadoop102 module]$ f3.sh start
(4)f3停止
[atguigu@hadoop102 module]$ f3.sh stop
1)Maxwell时间戳问题
此处为了模拟真实环境,对Maxwell源码进行了改动,增加了一个参数mock_date,该参数的作用就是指定Maxwell输出JSON字符串的ts时间戳的日期,接下来进行测试。
○1修改Maxwell配置文件config.properties,增加mock_date参数,如下
log_level=infoproducer=kafka
kafka.bootstrap.servers=hadoop102:9092,hadoop103:9092#kafka topic配置
kafka_topic=topic_db#注:该参数仅在maxwell教学版中存在,修改该参数后重启Maxwell才可生效
mock_date=2020-06-14# mysql login info
host=hadoop102
user=maxwell
password=maxwell
jdbc_options=useSSL=false&serverTimezone=Asia/Shanghai
注:该参数仅供学习使用**,修改该参数后重启Maxwell才可生效**。
○2重启Maxwell
[atguigu@hadoop102 bin]$ mxw.sh restart
○3重新生成模拟数据
[atguigu@hadoop102 bin]$ cd /opt/module/db_log/
[atguigu@hadoop102 db_log]$ java -jar gmall2020-mock-db-2021-11-14.jar
○4观察HDFS目标路径日期是否正常
通常情况下,增量表需要在首日进行一次全量同步,后续每日再进行增量同步,首日全量同步可以使用Maxwell的bootstrap功能,方便起见,下面编写一个增量表首日全量同步脚本。
1)在~/bin目录创建mysql_to_kafka_inc_init.sh
[atguigu@hadoop102 bin]$ vim mysql_to_kafka_inc_init.sh
脚本内容如下
#!/bin/bash# 该脚本的作用是初始化所有的增量表,只需执行一次MAXWELL_HOME=/opt/module/maxwellimport_data() {$MAXWELL_HOME/bin/maxwell-bootstrap --database gmall --table $1 --config $MAXWELL_HOME/config.properties
}case $1 in
"cart_info")import_data cart_info;;
"comment_info")import_data comment_info;;
"coupon_use")import_data coupon_use;;
"favor_info")import_data favor_info;;
"order_detail")import_data order_detail;;
"order_detail_activity")import_data order_detail_activity;;
"order_detail_coupon")import_data order_detail_coupon;;
"order_info")import_data order_info;;
"order_refund_info")import_data order_refund_info;;
"order_status_log")import_data order_status_log;;
"payment_info")import_data payment_info;;
"refund_payment")import_data refund_payment;;
"user_info")import_data user_info;;
"all")import_data cart_infoimport_data comment_infoimport_data coupon_useimport_data favor_infoimport_data order_detailimport_data order_detail_activityimport_data order_detail_couponimport_data order_infoimport_data order_refund_infoimport_data order_status_logimport_data payment_infoimport_data refund_paymentimport_data user_info;;
esac
2)为mysql_to_kafka_inc_init.sh增加执行权限
[atguigu@hadoop102 bin]$ chmod 777 ~/bin/mysql_to_kafka_inc_init.sh
3)测试同步脚本
(1)清理历史数据
为方便查看结果,现将HDFS上之前同步的增量表数据删除
[atguigu@hadoop102 ~]$ hadoop fs -ls /origin_data/gmall/db | grep _inc | awk '{print $8}' | xargs hadoop fs -rm -r -f
(2)执行同步脚本
[atguigu@hadoop102 bin]$ mysql_to_kafka_inc_init.sh all
4)检查同步结果
观察HDFS上是否重新出现增量表数据。
1)在/home/atguigu/bin目录下创建脚本cluster.sh
[atguigu@hadoop102 bin]$ vim cluster.sh
在脚本中填写如下内容
#!/bin/bashcase $1 in
"start"){echo ================== 启动 集群 ==================#启动 Zookeeper集群zk.sh start#启动 Hadoop集群hdp.sh start#启动 Kafka采集集群kf.sh start#启动采集 Flumef1.sh start#启动日志消费 Flumef2.sh start#启动业务消费 Flumef3.sh start#启动 maxwellmxw.sh start};;
"stop"){echo ================== 停止 集群 ==================#停止 Maxwellmxw.sh stop#停止 业务消费Flumef3.sh stop#停止 日志消费Flumef2.sh stop#停止 日志采集Flumef1.sh stop#停止 Kafka采集集群kf.sh stop#停止 Hadoop集群hdp.sh stop#停止 Zookeeper集群zk.sh stop};;
esac
2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 cluster.sh
3)cluster集群启动脚本
[atguigu@hadoop102 module]$ cluster.sh start
4)cluster集群停止脚本
[atguigu@hadoop102 module]$ cluster.sh stop
1)把apache-hive-3.1.2-bin.tar.gz上传到linux的/opt/software目录下
2)解压apache-hive-3.1.2-bin.tar.gz到/opt/module/目录下面
[atguigu@hadoop102 software]$ tar -zxvf /opt/software/apache-hive-3.1.2-bin.tar.gz -C /opt/module/
3)修改apache-hive-3.1.2-bin.tar.gz的名称为hive
[atguigu@hadoop102 software]$ mv /opt/module/apache-hive-3.1.2-bin/ /opt/module/hive
4)修改/etc/profile.d/my_env.sh,添加环境变量
[atguigu@hadoop102 software]$ sudo vim /etc/profile.d/my_env.sh
添加内容
#HIVE_HOME
export HIVE_HOME=/opt/module/hive
export PATH=$PATH:$HIVE_HOME/bin
重启Xshell对话框或者source一下 /etc/profile.d/my_env.sh文件,使环境变量生效
[atguigu@hadoop102 software]$ source /etc/profile.d/my_env.sh
5)解决日志Jar包冲突,进入/opt/module/hive/lib目录
[atguigu@hadoop102 lib]$ mv log4j-slf4j-impl-2.10.0.jar log4j-slf4j-impl-2.10.0.jar.bak
将MySQL的JDBC驱动拷贝到Hive的lib目录下
[atguigu@hadoop102 lib]$ cp /opt/software/mysql-connector-java-5.1.27-bin.jar /opt/module/hive/lib/
在$HIVE_HOME/conf目录下新建hive-site.xml文件
[atguigu@hadoop102 conf]$ vim hive-site.xml
添加如下内容
javax.jdo.option.ConnectionURL ** jdbc:mysql://hadoop102:3306/metastore?useSSL=false&useUnicode=true&characterEncoding=UTF-8 **javax.jdo.option.ConnectionDriverName com.mysql.jdbc.Driver javax.jdo.option.ConnectionUserName root javax.jdo.option.ConnectionPassword 000000 hive.metastore.warehouse.dir /user/hive/warehouse hive.metastore.schema.verification false hive.server2.thrift.port 10000 hive.server2.thrift.bind.host hadoop102 hive.metastore.event.db.notification.api.auth false hive.cli.print.header true hive.cli.print.current.db true
1)登陆MySQL
[atguigu@hadoop102 conf]$ mysql -uroot -p000000
2)新建Hive元数据库
mysql> create database metastore;
3)初始化Hive元数据库
[atguigu@hadoop102 conf]$ schematool -initSchema -dbType mysql -verbose
4)修改元数据库字符集
Hive元数据库的字符集默认为Latin1,由于其不支持中文字符,故若建表语句中包含中文注释,会出现乱码现象。如需解决乱码问题,须做以下修改。
修改Hive元数据库中存储注释的字段的字符集为utf-8
(1)字段注释
mysql> alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
(2)表注释
mysql> alter table TABLE_PARAMS modify column PARAM_VALUE mediumtext character set utf8;
4)退出mysql
[atguigu@hadoop102 hive]$ bin/hive
[atguigu@hadoop202 hive]$ nohup hive --service metastore 2>&1 &
[atguigu@hadoop202 hive]$ nohup hive --service hiveserver2 2>&1 &