小白学Pytorch系列--Torch API (7)
创始人
2025-05-31 10:21:55
0

小白学Pytorch系列–Torch API (7)

Comparison Ops

allclose

此函数检查输入和其他是否满足条件:

>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08]))
False
>>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09]))
True
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]))
False
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True)
True

argsort

返回沿给定维度按值升序对张量进行排序的索引。

>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0785,  1.5267, -0.8521,  0.4065],[ 0.1598,  0.0788, -0.0745, -1.2700],[ 1.2208,  1.0722, -0.7064,  1.2564],[ 0.0669, -0.2318, -0.8229, -0.9280]])>>> torch.argsort(a, dim=1)
tensor([[2, 0, 3, 1],[3, 2, 1, 0],[2, 1, 0, 3],[3, 2, 1, 0]])

eq

计算逐元素相等性

>>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ True, False],[False, True]])

equal

如果两个张量具有相同的大小和元素,则为 True,否则为 False。

>>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2]))
True

ge

计算输入≥其他元素。

>>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[True, True], [False, True]])

greater_equal

torch.ge() 的别名

gt

计算输入>其他元素。

>>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, True], [False, False]])

greater

torch.gt() 的别名

isclose

返回一个带有布尔元素的新张量,表示输入的每个元素是否“接近”其他元素的相应元素。 亲密度定义为:

>>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4)))
tensor([ True, False, False])
>>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5)
tensor([True, True])

isfinite

返回一个新的张量,其中包含表示每个元素是否有限的布尔元素。

>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([True,  False,  True,  False,  False])

isin

测试元素的每个元素是否在 test_elements 中。 返回与元素相同形状的布尔张量,对于 test_elements 中的元素为 True,否则为 False。

torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3]))
tensor([[False,  True],[ True, False]])

isinf

测试输入的每个元素是否为无穷大(正无穷大或负无穷大)。

>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([False,  True,  False,  True,  False])

isposinf

测试输入的每个元素是否为正无穷大。

>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
>>> torch.isposinf(a)
tensor([False,  True, False])

isneginf

测试输入的每个元素是否为负无穷大。

>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
>>> torch.isneginf(a)
tensor([ True, False, False])

isnan

返回一个新的张量,其中布尔元素表示输入的每个元素是否为NaN。当复数值的实部和/或虚部为NaN时,将其视为NaN。

>>> torch.isnan(torch.tensor([1, float('nan'), 2]))
tensor([False, True, False])

isreal

返回一个新的张量,其中布尔元素表示输入的每个元素是否为实值。所有实数类型都被认为是实数。当复数值的虚部为0时,它们被认为是实数。

>>> torch.isreal(torch.tensor([1, 1+1j, 2+0j]))
tensor([True, False, True])

kthvalue

返回一个命名元组(值、索引),其中值是给定维度dim中输入张量每行的第k个最小元素。索引是找到的每个元素的索引位置。

>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1.,  2.,  3.,  4.,  5.])
>>> torch.kthvalue(x, 4)
torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3))>>> x=torch.arange(1.,7.).resize_(2,3)
>>> x
tensor([[ 1.,  2.,  3.],[ 4.,  5.,  6.]])
>>> torch.kthvalue(x, 2, 0, True)
torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]]))

le

计算输入≤其他元素。

>>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[True, False], [True, True]])

less_equal

torch.le()的别名。

lt

计算输入<其他元素。

>>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, False], [True, False]])

less

torch.lt()的别名

maximum

计算输入和其他元素的元素最大值。

>>> a = torch.tensor((1, 2, -1))
>>> b = torch.tensor((3, 0, 4))
>>> torch.maximum(a, b)
tensor([3, 2, 4])

minimum

计算输入和其他的元素最小值。

>>> a = torch.tensor((1, 2, -1))
>>> b = torch.tensor((3, 0, 4))
>>> torch.minimum(a, b)
tensor([1, 0, -1])

fmax

计算输入和其他的元素最大值。

>>> a = torch.tensor([9.7, float('nan'), 3.1, float('nan')])
>>> b = torch.tensor([-2.2, 0.5, float('nan'), float('nan')])
>>> torch.fmax(a, b)
tensor([9.7000, 0.5000, 3.1000,    nan])

fmin

计算输入和其他的元素最小值。

>>> a = torch.tensor([2.2, float('nan'), 2.1, float('nan')])
>>> b = torch.tensor([-9.3, 0.1, float('nan'), float('nan')])
>>> torch.fmin(a, b)
tensor([-9.3000, 0.1000, 2.1000,    nan])

ne

计算输入≠其他元素。

>>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, True], [True, False]])

not_equal

torch.ne()的别名。

sort

将输入张量的元素沿给定维度按值升序排列。

>>> x = torch.randn(3, 4)
>>> sorted, indices = torch.sort(x)
>>> sorted
tensor([[-0.2162,  0.0608,  0.6719,  2.3332],[-0.5793,  0.0061,  0.6058,  0.9497],[-0.5071,  0.3343,  0.9553,  1.0960]])
>>> indices
tensor([[ 1,  0,  2,  3],[ 3,  1,  0,  2],[ 0,  3,  1,  2]])>>> sorted, indices = torch.sort(x, 0)
>>> sorted
tensor([[-0.5071, -0.2162,  0.6719, -0.5793],[ 0.0608,  0.0061,  0.9497,  0.3343],[ 0.6058,  0.9553,  1.0960,  2.3332]])
>>> indices
tensor([[ 2,  0,  0,  1],[ 0,  1,  1,  2],[ 1,  2,  2,  0]])
>>> x = torch.tensor([0, 1] * 9)
>>> x.sort()
torch.return_types.sort(values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),indices=tensor([ 2, 16,  4,  6, 14,  8,  0, 10, 12,  9, 17, 15, 13, 11,  7,  5,  3,  1]))
>>> x.sort(stable=True)
torch.return_types.sort(values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),indices=tensor([ 0,  2,  4,  6,  8, 10, 12, 14, 16,  1,  3,  5,  7,  9, 11, 13, 15, 17]))

topk

返回给定输入张量沿给定维度的k个最大元素。

>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1.,  2.,  3.,  4.,  5.])
>>> torch.topk(x, 3)
torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2]))

msort

按值升序排列输入张量的第一个维度上的元素。

>>> t = torch.randn(3, 4)
>>> t
tensor([[-0.1321,  0.4370, -1.2631, -1.1289],[-2.0527, -1.1250,  0.2275,  0.3077],[-0.0881, -0.1259, -0.5495,  1.0284]])
>>> torch.msort(t)
tensor([[-2.0527, -1.1250, -1.2631, -1.1289],[-0.1321, -0.1259, -0.5495,  0.3077],[-0.0881,  0.4370,  0.2275,  1.0284]])

相关内容

热门资讯

在PyCharm中运行Pyth... 先看一个报错: Traceback (most recent call last):F...
最新或2023(历届)给淘宝买... 给淘宝买家的感谢信范文一:  亲:  您好!  首先在此感谢您对本店的关注与支持!我们是一群年轻上进...
写给物业的一封感谢信范文 怎么... 写给物业的感谢信范文一:  XX建物业管理有限公司成都分公司:  新年伊始辞旧岁,万象更新迎新春。公...
关于最新或2023(历届)企业...  企业对员工的感谢信范文一:  尊敬的各位同事:  大家好!为应对公司生产一线人员缺口,同时保障公司...
最新或2023(历届)企业对员...  企业对员工的感谢信范文一:  尊敬的各位同事:  大家好!为应对公司生产一线人员缺口,同时保障公司...
最新或2023(历届)教你怎么... 给领导的感谢信范文一:  尊敬的xx县交巡警大队领导:  我们是xxx丝绸印花有限公司,今天来信的目...
城乡供水一体化平台-助力乡村振... 城乡供水一体化管理系统建设方案 城乡供水一体化管理系统是运用云计算、大数据等信息化手段࿰...
【MySQL】锁 锁 文章目录锁全局锁表级锁表锁元数据锁(MDL)意向锁AUTO-INC锁...
捐款感谢信的范文参照 感谢村民... 捐款感谢信的范文一尊敬的xx实验中学的全体师生、员工:  您们好!您们的捐款我们如数收到,您们的爱心...
最新或2023(历届)火灾捐款...  火灾捐款感谢信范文一:同志:  正月初七早晨,新河镇西门街遭受火灾,一排木结构二层七间民房着火,居...
毕业送给给老师的感谢信 六年级... 尊敬的老师:  你好!感谢这三年来你对我的关怀与照顾,在你的帮助下,我也考得了好成绩,我之所以能考到...
最新或2023(历届)给老师的...   给老师的感谢信范文参考一敬爱的老师:  您好!最近在课堂上看到您容光满面,我也替您感到快乐与舒心...
家长写给老师的感谢信范文精选 ... 泾洋初级中学的老师、同学们:  我是贵校初三第十三班学生陈佳豪的家长。就在清明节放假期间,我的孩子在...
【vue2】vue2中的性能优... ⭐ v-for 遍历避免同时使用 v-if ⭐ v-for 中的key绑定唯一的值 ⭐ v-show...
freemarker转成PDF... Spring Boot 集成 FreeMarker 可以通过在 pom.xml 文件中添加依赖项来实...
写给亲爱的妈妈的一封感谢信 给... 写给亲爱的妈妈的一封感谢信亲爱的妈妈:  您好!  恩情,从小处讲可以是炎夏中给你一碗清爽冰凉的柠檬...
受到爱心捐款的感谢信范文 受灾... 受到爱心捐款感谢信一尊敬的老师,亲爱的同学: 你们好!  自9月xx日校工会、校团委发出向后港小学陈...
关于国家助学金感谢信范文 关于... 关于国家助学金感谢信篇一  尊敬的各位领导、老师:  你们好!  我很高兴能向国家和学校申请国家助学...
最新或2023(历届)助学金获...  助学金获奖感谢信范文篇一:  首先,感谢国家对我们贫困大学生的关怀和关爱。  xxxx年10月份我...
关于拾金不昧的感谢信精选范文 ... 拾金不昧的感谢信范文篇一  尊敬的县保健院领导及全体员工:  我叫XXX,于20XX年2月17日下午...