目录
0、前言
1、二叉树链式结构的创建
2、二叉树的遍历
3、 前序、中序以及后序遍历
4、 前序、中序以及后序遍历的实现——双路递归
分治思想
求叶子节点数量,分治思想:
分治思想
求第k层节点个数:
编辑
分治思想
求二叉树的深度:
分治思想
二叉树查找值为x的结点:
5、二叉树基础oj练习
1. 单值二叉树。
2、检查两颗树是否相同。
3. 对称二叉树。
4. 二叉树的前序遍历。
5. 二叉树中序遍历 。
6. 二叉树的后序遍历 。
7. 另一颗树的子树。
普通二叉树的增删查改没有什么意义,主要学习遍历、结构
而存储数据,不如用顺序表,链表,那么学习他的意义是为了什么?
1.为了后面学习更为复杂的二叉树打基础。(搜索二叉树、ALV树、红黑树、B树、B+树、B*树)
2.有很多二叉树的OJ算法题,都是出在普通二叉树上。
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,反过头再来研究二叉树真正的创建方式。
手搓上图二叉树的链式结构:
typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;//手搓二叉树
BTNode* BuyNode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));assert(node);node->data = x;node->left = NULL;node->right = NULL;return node;
}
BTNode* CreatBinaryTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;return node1;
}
int main()
{BTNode* root = CreatBinaryTree();return 0;
}
学习二叉树结构,最简单的方式就是遍历。
所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉 树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。
遍历 是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:
- 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
- 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
- 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为 根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
// 二叉树前序遍历
void PreOrder(BTNode * root);
// 二叉树中序遍历
void InOrder(BTNode* root);
// 二叉树后序遍历
void PostOrder(BTNode* root);//求树的数据个数
void TreeSize1(BTNode* root);//解决TreeSize1的问题,分治算法求Size
int TreeSize2(BTNode* root);
#include"BinaryTree.h"BTNode* BuyNode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));assert(node);node->data = x;node->left = NULL;node->right = NULL;return node;
}
BTNode* CreatBinaryTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;return node1;
}void PreOrder(BTNode* root)
{if (root == NULL){printf("# ");return;}printf("%d ", root->data);PreOrder(root->left);PreOrder(root->right);
}void InOrder(BTNode* root)
{if (root == NULL){printf("# ");return;}PreOrder(root->left);printf("%d ", root->data);PreOrder(root->right);
}void PostOrder(BTNode* root)
{if (root == NULL){printf("# ");return;}PreOrder(root->left);PreOrder(root->right);
}int count = 0;
//不能定义局部变量count,因为每次函数的栈帧,增加的是自己的count
void TreeSize1(BTNode* root)
{if (root == NULL){return;}++count;TreeSize1(root->left);TreeSize1(root->right);
}int TreeSize2(BTNode* root)
{return root == NULL ? 0 : TreeSize2(root->left) + TreeSize2(root->right)+1;
}
#include"BinaryTree.h"
extern int count;
int main()
{BTNode* root = CreatBinaryTree();PreOrder(root);printf("\n");InOrder(root);printf("\n");PostOrder(root);printf("\n");//每次调用前将count结果置为空count = 0;TreeSize1(root);printf("%d\n",count);count = 0;TreeSize1(root);printf("%d\n", count);printf("%d\n", TreeSize2(root));printf("%d\n", TreeSize2(root));return 0;
}
TreeSize1 此时定义局部变量,在多线程调用,并行计数,就会失败
TreeSize2 此时运用分治思想,在任何情况,只要调用,便会返回size大小
int TreeLeafSize(BTNode* root) {if (root == 0){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return TreeLeafSize(root->left) + TreeLeafSize(root->right); }
//求第k层节点个数 int TreeKLevel(BTNode* root, int k) {assert(k >= 1);if (root == NULL){return 0;}if (k == 1);{return 1;}return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1); }
//求二叉树的深度
int TreeDepth(BTNode* root)
{if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}int ret1 = TreeDepth(root->left) + 1;int ret2 = TreeDepth(root->right) + 1;return ret1 > ret2 ? ret1 : ret2;
}
//二叉树查找值为x的结点
BTNode* TreeFind(BTNode* root, BTDataType x)
{if (root == NULL){return NULL;}if (root->data == x){return root;}BTNode* ret1 = TreeFind(root->left, x);if (ret1){return ret1;}BTNode* ret2 = TreeFind(root->right, x);if (ret2){return ret2;}return NULL;
}
965. 单值二叉树 - 力扣(LeetCode)https://leetcode.cn/problems/univalued-binary-tree/
bool PreOrderCompare(struct TreeNode* root,int val)
{if(root == NULL){return true;}if(root->val != val){return false;}return PreOrderCompare(root->left,val) && PreOrderCompare(root->right,val);
}bool isUnivalTree(struct TreeNode* root){if(root == NULL){return true;}return PreOrderCompare(root,root->val);
}
bool isUnivalTree(struct TreeNode* root){if(root == NULL){return true;}if(root->left && root->left->val != root->val){return false;}if(root->right && root->right->val != root->val){return false;}return isUnivalTree(root->left) && isUnivalTree(root->right);//此时左边为false,右边就不进行运算,减少空间时间消耗
}
100. 相同的树 - 力扣(LeetCode)https://leetcode.cn/problems/same-tree/
/*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/bool isSameTree(struct TreeNode* p, struct TreeNode* q){if(p == NULL && q == NULL){return true;}if(p == NULL || q==NULL){return false;}if(p->val != q->val){return false;}return isSameTree(p->left, q->left) && isSameTree(p->right,q->right);}
101. 对称二叉树 - 力扣(LeetCode)https://leetcode.cn/problems/symmetric-tree/
bool isSameTree(struct TreeNode* p, struct TreeNode* q){if(p == NULL && q == NULL){return true;}if(p == NULL || q==NULL){return false;}if(p->val != q->val){return false;}return isSameTree(p->left, q->right) && isSameTree(p->right,q->left);}
bool isSymmetric(struct TreeNode* root){if(root == NULL){return true;}return isSameTree(root->left,root->right);}
144. 二叉树的前序遍历 - 力扣(LeetCode)https://leetcode.cn/problems/binary-tree-preorder-traversal/submissions/
/*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/
/*** Note: The returned array must be malloced, assume caller calls free().*/void preOrder(struct TreeNode* root,int* result,int* returnSize){if(root == NULL){return;}result[*returnSize] = root->val;(*returnSize) ++;preOrder(root->left,result,returnSize);preOrder(root->right,result,returnSize);}
int* preorderTraversal(struct TreeNode* root, int* returnSize){int* result = (int*)malloc(sizeof(int) * 1000);*returnSize = 0;preOrder(root,result,returnSize);return result;
}
Loading Question... - 力扣(LeetCode)https://leetcode.cn/problems/binary-tree-inorder-traversal/
/*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*//*** Note: The returned array must be malloced, assume caller calls free().*/void inOrder(struct TreeNode* root,int* result,int* returnSize){if(root == NULL){return;}inOrder(root->left,result,returnSize);result[*returnSize] = root->val;(*returnSize) ++;inOrder(root->right,result,returnSize);}
int* inorderTraversal(struct TreeNode* root, int* returnSize){int* result = (int*)malloc(sizeof(int) * 1000);*returnSize = 0;inOrder(root,result,returnSize);return result;
}
145. 二叉树的后序遍历 - 力扣(LeetCode)https://leetcode.cn/problems/binary-tree-postorder-traversal/
/*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*//*** Note: The returned array must be malloced, assume caller calls free().*/
void postOrder(struct TreeNode* root,int* result,int* returnSize){if(root == NULL){return;}postOrder(root->left,result,returnSize);postOrder(root->right,result,returnSize);result[*returnSize] = root->val;(*returnSize) ++;}
int* postorderTraversal(struct TreeNode* root, int* returnSize){int* result = (int*)malloc(sizeof(int) * 1000);*returnSize = 0;postOrder(root,result,returnSize);return result;
}
力扣 (leetcode.cn)https://leetcode.cn/problems/subtree-of-another-tree/
/*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/
bool isSameTree(struct TreeNode* p, struct TreeNode* q){if(p == NULL && q == NULL){return true;}if(p == NULL || q==NULL){return false;}if(p->val != q->val){return false;}return isSameTree(p->left, q->left) && isSameTree(p->right,q->right);}bool isSubtree(struct TreeNode* root, struct TreeNode* subRoot){if(root==NULL){return false;}if(isSameTree(root,subRoot) == true){return true;}return isSubtree(root->left,subRoot) || isSubtree(root->right,subRoot);
}