数据挖掘实验:关联规则分析之Apriori算法的实现
创始人
2025-05-28 04:25:09

一、实验原理
Apriori算法是第一个关联规则挖掘算法,也是最经典的算法。它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接(类矩阵运算)与剪枝(去掉那些没必要的中间结果)组成。该算法中项集的概念即为项的集合。包含K个项的集合为k项集。项集出现的频率是包含项集的事务数,称为项集的频率。如果某项集满足最小支持度,则称它为频繁项集。

二、实验内容
在这里插入图片描述

三、实验过程
python实现Apriori算法

from __future__ import print_function
import pandas as pd#自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):x = list(map(lambda i:sorted(i.split(ms)), x))l = len(x[0])r = []for i in range(len(x)):for j in range(i,len(x)):if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))return r#寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果support_series = 1.0*d.sum()/len(d) #支持度序列column = list(support_series[support_series > support].index) #初步根据支持度筛选k = 0while len(column) > 1:k = k+1print(u'\n正在进行第%s次搜索...' %k)column = connect_string(column, ms)print(u'数目:%s...' %len(column))sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数#创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).Tsupport_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选support_series = support_series.append(support_series_2)column2 = []for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?i = i.split(ms)for j in range(len(i)):column2.append(i[:j]+i[j+1:]+i[j:j+1])cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列for i in column2: #计算置信度序列cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选result[i] = 0.0result[i]['confidence'] = cofidence_series[i]result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出print(u'\n结果为:')print(result)return result

Apriori算法调用,进行关联性分析

from __future__ import print_function
import pandas as pd
from apriori import * #导入自行编写的apriori函数inputfile = '../data/menu_orders.xls'
outputfile = '../tmp/apriori_rules.xls' #结果文件
data = pd.read_excel(inputfile, header = None)print(u'\n转换原始数据至0-1矩阵...')
ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数
b = map(ct, data.as_matrix()) #用map方式执行
data = pd.DataFrame(list(b)).fillna(0) #实现矩阵转换,空值用0填充
print(u'\n转换完毕。')
del b #删除中间变量b,节省内存support = 0.2 #最小支持度
confidence = 0.5 #最小置信度
ms = '---' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符find_rule(data, support, confidence, ms).to_excel(outputfile) #保存结果

四、实验结果
结果如下
support confidence
e—a 0.3 1.000000
e—c 0.3 1.000000
c—e—a 0.3 1.000000
a—e—c 0.3 1.000000
c—a 0.5 0.714286
a—c 0.5 0.714286
a—b 0.5 0.714286
c—b 0.5 0.714286
b—a 0.5 0.625000
b—c 0.5 0.625000
a—c—e 0.3 0.600000
b—c—a 0.3 0.600000
a—c—b 0.3 0.600000
a—b—c 0.3 0.600000

相关内容

热门资讯

英伟达暴涨,科技股全线拉升!史...   炒股就看金麒麟分析师研报,权威,专业,及时,全面,助您挖掘潜力主题机会! (来源:中国基金报)...
开了16小时会,欧盟没通过 峰会开了16小时,分歧过大计划搁浅,欧盟动用俄资产方案未获通过当地时间19日,欧盟领导人达成协议,将...
嘉峪关在全省率先设立“企业宁静...   【四中全会精神在基层】【发展新优势】  嘉峪关在全省率先设立“企业宁静周”  “现在有了‘企业宁...
黎巴嫩总统:黎以会谈应确保黎南... 每经AI快讯,12月20日,据新华社,黎巴嫩总统约瑟夫·奥恩19日在听取关于黎以会谈的汇报时强调,确...
花旗集团给出比特币 12 个月... (来源:吴说)花旗集团(Citigroup) 在最新报告中给予比特币 12 个月“基准情景”目标价 ...