Linux 内核设计了多种锁机制,比如 读写锁、自旋锁 和 信号量 等。为什么要设计这么多锁机制呢?这是因为不同的锁机制适用于不同的场景,比如 读写锁 适用于读多写少的场景;而 信号量 适用于进程长时间占用锁,并且允许上下文切换的场景。
本文主要介绍一种 Linux 内核中性能非常高的锁机制:RCU锁机制。
RCU 是 Read Copy Update 的缩写,中文意思是 读取、复制、更新。RCU锁机制 就是通过读取、复制和更新这三个操作来实现锁功能。在介绍 RCU锁 之前,我们先来看看下面的实例。
struct foo {int a;char b;long c;};struct foo *gbl_foo;void foo_read(void)
{foo *fp = gbl_foo;if (fp != NULL)do_something(fp->a, fp->b, fp->c);
}void foo_update(foo *new_fp)
{foo *old_fp = gbl_foo;gbl_foo = new_fp;free(old_fp);
}
假如有线程 A 和线程 B 同时执行 foo_read(),而另线程 C 执行 foo_update(),那么会出现以下几种情况:
如果线程 A 或线程 B 在读取旧的 gbl_foo 数据还没完成时,线程 C 释放了旧的 gbl_foo 指针,那么将会导致程序奔溃。
也就是说,在不加锁的情况下,对公共数据的访问是危险的。当然,我们可以使用 读写锁、信号量 或者 自旋锁 来对公共数据进行保护。但这些锁都有各自的弊端,比如:
那么有没有一种锁机制,对系统的性能影响不大的呢?所以,Linux 内核黑客们就创造出 RCU锁。
如果能够保证所有使用某个公共数据的线程不再使用它,那么就可以安全删除此公共数据。
在上面的例子中,如果能够保证线程 A 和线程 B 不再使用旧数据,那么线程 C 就能安全删除旧数据。
如下图所示(旧数据对应对象A,新数据对应对象B):

rcu-timeline
从上图的时间线可以看出,线程 A 和线程 B 从 glb_foo 指针获取的都是对象 A 的引用。
提示:因为 glb_foo 指针在时间点 B 才被替换成对象 B,而线程 A 和线程 B 都是在时间点 B 前获取 glb_foo 指针指向的对象,所以它们获取到的都是对象 A 的引用。
而在 安全点 后,线程 A 和线程 B 便不再使用旧数据(对象A)。所以此时,线程 C 便可以安全释放旧数据(对象A)。
线程 A 和线程 B 使用旧数据的这段期间,被称为 宽限期。如下图所示:

grace-period
所以,RCU锁 的核心思想就是怎么确定 宽限期。因为确定宽限期后,就可以随心所欲地释放旧数据。
资料直通车:Linux内核源码技术学习路线+视频教程内核源码
学习直通车:Linux内核源码内存调优文件系统进程管理设备驱动/网络协议栈
RCU锁 的原理虽然比较简单,但是实现却有点小复杂,主要是因为 宽限期 的确定比较麻烦。
为了能够确认 宽限期,使用 RCU 锁时有以下限制:
由于在 RCU 临界区是禁止调度的,所以如果 CPU 发生了调度,就可以确定当前线程已经退出了临界区(也就是说当前线程不再引用旧对象)。如果所有的 CPU 都至少发生过一次调度,那么也就说明没有任何线程引用旧对象,此时就可以安全释放旧对象了。
所以,RCU 锁的核心原理是:在释放旧对象前,必须等待所有 CPU 核心至少调度一次。如下代码所示:
void foo_update(struct foo *new_fp)
{// 1. 将 gbl_foo 指向新对象spin_lock(&foo_mutex);foo *old_fp = gbl_foo;gbl_foo = new_fp;spin_unlock(&foo_mutex);// 2. 等待所有 CPU 核心至少调度一次synchronize_kernel();// 3. 释放旧对象free(old_fp);
}
foo_update() 函数释放旧对象的步骤如下:
通过前面的分析可知,在 RCU 临界区中是不能发生调度的。要保证临界区不发生调度,首先要确保在临界区中不能调用可能触发调度的函数,如:alloc_pages()。这点需要 RCU 使用者自己保证。
另外一点要保证的是,内核不能发生抢占,这点可以通过调用 preempt_disable() 函数实现。内核定义了一个名为 rcu_read_lock() 的宏,如下所示:
#define rcu_read_lock() preempt_disable()
可以看出, rcu_read_lock() 宏其实就是 preempt_disable() 函数的别名。所以,使用 RCU 锁时,可以使用 rcu_read_lock() 宏对临界区进行保护。
当退出临界区时,需要调用 rcu_read_unlock() 把内核抢占打开。rcu_read_unlock() 的定义如下:
#define rcu_read_unlock() preempt_enable()
可以看出,rcu_read_unlock() 宏就是 preempt_enable() 的别名。
所以,当我们使用 RCU 锁对临界区进行保护时,必须将需要保护的代码放置在 rcu_read_lock() 和 rcu_read_unlock() 之间,如下所示:
void foo_read(void)
{// 1. 保护临界区rcu_read_lock();foo *fp = gbl_foo;if (fp != NULL)do_something(fp->a, fp->b, fp->c);// 2. 退出临界区rcu_read_unlock();
}
