2022年, Vision Transformer (ViT)成为卷积神经网络(cnn)的有力竞争对手,卷积神经网络目前是计算机视觉领域的最先进技术,广泛应用于许多图像识别应用。在计算效率和精度方面,ViT模型超过了目前最先进的(CNN)几乎四倍。
ViT模型的性能取决于优化器、网络深度和特定于数据集的超参数等, 标准 ViT stem 采用 16 *16 卷积和 16 步长。

CNN 将原始像素转换为特征图。然后,tokenizer 将特征图转换为一系列令牌,这些令牌随后被送入transformer。然后transformer使用注意力方法生成一系列输出令牌。
projector 最终将输出令牌标记重新连接到特征图。
vision transformer模型的整体架构如下:
ViT中最主要的就是注意力机制,所以可视化注意力就成为了解ViT的重要步骤,所以我们这里介绍如何可视化ViT中的注意力
导入库
importosimporttorchimportnumpyasnpimportmathfromfunctoolsimportpartialimporttorchimporttorch.nnasnnimportipywidgetsaswidgetsimportiofromPILimportImagefromtorchvisionimporttransformsimportmatplotlib.pyplotaspltimportnumpyasnpfromtorchimportnnimportwarningswarnings.filterwarnings("ignore")
创建一个VIT
deftrunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):# type: (Tensor, float, float, float, float) -> Tensorreturn_no_grad_trunc_normal_(tensor, mean, std, a, b)def_no_grad_trunc_normal_(tensor, mean, std, a, b):# Cut & paste from PyTorch official master until it's in a few official releases - RW# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdfdefnorm_cdf(x):# Computes standard normal cumulative distribution functionreturn (1.+math.erf(x/math.sqrt(2.))) /2.defdrop_path(x, drop_prob: float=0., training: bool=False):ifdrop_prob==0.ornottraining:returnxkeep_prob=1-drop_prob# work with diff dim tensors, not just 2D ConvNetsshape= (x.shape[0],) + (1,) * (x.ndim-1)random_tensor=keep_prob+ \torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_() # binarizeoutput=x.div(keep_prob) *random_tensorreturnoutputclassDropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""def__init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob=drop_probdefforward(self, x):returndrop_path(x, self.drop_prob, self.training)classMlp(nn.Module):def__init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features=out_featuresorin_featureshidden_features=hidden_featuresorin_featuresself.fc1=nn.Linear(in_features, hidden_features)self.act=act_layer()self.fc2=nn.Linear(hidden_features, out_features)self.drop=nn.Dropout(drop)defforward(self, x):x=self.fc1(x)x=self.act(x)x=self.drop(x)x=self.fc2(x)x=self.drop(x)returnxclassAttention(nn.Module):def__init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):super().__init__()self.num_heads=num_headshead_dim=dim//num_headsself.scale=qk_scaleorhead_dim**-0.5self.qkv=nn.Linear(dim, dim*3, bias=qkv_bias)self.attn_drop=nn.Dropout(attn_drop)self.proj=nn.Linear(dim, dim)self.proj_drop=nn.Dropout(proj_drop)defforward(self, x):B, N, C=x.shapeqkv=self.qkv(x).reshape(B, N, 3, self.num_heads, C//self.num_heads).permute(2, 0, 3, 1, 4)q, k, v=qkv[0], qkv[1], qkv[2]attn= (q@k.transpose(-2, -1)) *self.scaleattn=attn.softmax(dim=-1)attn=self.attn_drop(attn)x= (attn@v).transpose(1, 2).reshape(B, N, C)x=self.proj(x)x=self.proj_drop(x)returnx, attnclassBlock(nn.Module):def__init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.norm1=norm_layer(dim)self.attn=Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)self.drop_path=DropPath(drop_path) ifdrop_path>0.elsenn.Identity()self.norm2=norm_layer(dim)mlp_hidden_dim=int(dim*mlp_ratio)self.mlp=Mlp(in_features=dim, hidden_features=mlp_hidden_dim,act_layer=act_layer, drop=drop)defforward(self, x, return_attention=False):y, attn=self.attn(self.norm1(x))ifreturn_attention:returnattnx=x+self.drop_path(y)x=x+self.drop_path(self.mlp(self.norm2(x)))returnxclassPatchEmbed(nn.Module):""" Image to Patch Embedding"""def__init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):super().__init__()num_patches= (img_size//patch_size) * (img_size//patch_size)self.img_size=img_sizeself.patch_size=patch_sizeself.num_patches=num_patchesself.proj=nn.Conv2d(in_chans, embed_dim,kernel_size=patch_size, stride=patch_size)defforward(self, x):B, C, H, W=x.shapex=self.proj(x).flatten(2).transpose(1, 2)returnxclassVisionTransformer(nn.Module):""" Vision Transformer """def__init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):super().__init__()self.num_features=self.embed_dim=embed_dimself.patch_embed=PatchEmbed(img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)num_patches=self.patch_embed.num_patchesself.cls_token=nn.Parameter(torch.zeros(1, 1, embed_dim))self.pos_embed=nn.Parameter(torch.zeros(1, num_patches+1, embed_dim))self.pos_drop=nn.Dropout(p=drop_rate)# stochastic depth decay ruledpr= [x.item() forxintorch.linspace(0, drop_path_rate, depth)]self.blocks=nn.ModuleList([Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)foriinrange(depth)])self.norm=norm_layer(embed_dim)# Classifier headself.head=nn.Linear(embed_dim, num_classes) ifnum_classes>0elsenn.Identity()trunc_normal_(self.pos_embed, std=.02)trunc_normal_(self.cls_token, std=.02)self.apply(self._init_weights)def_init_weights(self, m):ifisinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)ifisinstance(m, nn.Linear) andm.biasisnotNone:nn.init.constant_(m.bias, 0)elifisinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)definterpolate_pos_encoding(self, x, w, h):npatch=x.shape[1] -1N=self.pos_embed.shape[1] -1ifnpatch==Nandw==h:returnself.pos_embedclass_pos_embed=self.pos_embed[:, 0]patch_pos_embed=self.pos_embed[:, 1:]dim=x.shape[-1]w0=w//self.patch_embed.patch_sizeh0=h//self.patch_embed.patch_size# we add a small number to avoid floating point error in the interpolation# see discussion at https://github.com/facebookresearch/dino/issues/8w0, h0=w0+0.1, h0+0.1patch_pos_embed=nn.functional.interpolate(patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),scale_factor=(w0/math.sqrt(N), h0/math.sqrt(N)),mode='bicubic',)assertint(w0) ==patch_pos_embed.shape[-2] andint(h0) ==patch_pos_embed.shape[-1]patch_pos_embed=patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)returntorch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)defprepare_tokens(self, x):B, nc, w, h=x.shapex=self.patch_embed(x) # patch linear embedding# add the [CLS] token to the embed patch tokenscls_tokens=self.cls_token.expand(B, -1, -1)x=torch.cat((cls_tokens, x), dim=1)# add positional encoding to each tokenx=x+self.interpolate_pos_encoding(x, w, h)returnself.pos_drop(x)defforward(self, x):x=self.prepare_tokens(x)forblkinself.blocks:x=blk(x)x=self.norm(x)returnx[:, 0]defget_last_selfattention(self, x):x=self.prepare_tokens(x)fori, blkinenumerate(self.blocks):ifi
创建可视化函数
deftransform(img, img_size):img=transforms.Resize(img_size)(img)img=transforms.ToTensor()(img)returnimgdefvisualize_predict(model, img, img_size, patch_size, device):img_pre=transform(img, img_size)attention=visualize_attention(model, img_pre, patch_size, device)plot_attention(img, attention)defvisualize_attention(model, img, patch_size, device):# make the image divisible by the patch sizew, h=img.shape[1] -img.shape[1] %patch_size, img.shape[2] - \img.shape[2] %patch_sizeimg=img[:, :w, :h].unsqueeze(0)w_featmap=img.shape[-2] //patch_sizeh_featmap=img.shape[-1] //patch_sizeattentions=model.get_last_selfattention(img.to(device))nh=attentions.shape[1] # number of head# keep only the output patch attentionattentions=attentions[0, :, 0, 1:].reshape(nh, -1)attentions=attentions.reshape(nh, w_featmap, h_featmap)attentions=nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu().numpy()returnattentionsdefplot_attention(img, attention):n_heads=attention.shape[0]plt.figure(figsize=(10, 10))text= ["Original Image", "Head Mean"]fori, figinenumerate([img, np.mean(attention, 0)]):plt.subplot(1, 2, i+1)plt.imshow(fig, cmap='inferno')plt.title(text[i])plt.show()plt.figure(figsize=(10, 10))foriinrange(n_heads):plt.subplot(n_heads//3, 3, i+1)plt.imshow(attention[i], cmap='inferno')plt.title(f"Head n: {i+1}")plt.tight_layout()plt.show()classLoader(object):def__init__(self):self.uploader=widgets.FileUpload(accept='image/*', multiple=False)self._start()def_start(self):display(self.uploader)defgetLastImage(self):try:foruploaded_filenameinself.uploader.value:uploaded_filename=uploaded_filenameimg=Image.open(io.BytesIO(bytes(self.uploader.value[uploaded_filename]['content'])))returnimgexcept:returnNonedefsaveImage(self, path):withopen(path, 'wb') asoutput_file:foruploaded_filenameinself.uploader.value:content=self.uploader.value[uploaded_filename]['content']output_file.write(content)
对一个图像的注意力进行可视化
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")if device.type == "cuda":torch.cuda.set_device(1)name_model = 'vit_small'patch_size = 8model = VitGenerator(name_model, patch_size, device, evaluate=True, random=False, verbose=True)# Visualizing Dog Imagepath = '/content/corgi_image.jpg'img = Image.open(path)factor_reduce = 2img_size = tuple(np.array(img.size[::-1]) // factor_reduce) visualize_predict(model, img, img_size, patch_size, device)


本文代码
https://avoid.overfit.cn/post/4c0e8cb7959641eb9b92c1d5a3c7161c
作者:Aryan Jadon
下一篇:C语言刷题之摩尔投票法